Reference Library

  1. Tan, A., & Henzl, M. T. (2009). Conformational stabilities of guinea pig OCP1 and OCP2. Biophysical Chemistry, 144(3), 108-118. https://doi.org/10.1016/j.bpc.2009.07.003
  2. Henzl, M. T., Davis, M. E., & Tan, A. (2008). Divalent ion binding properties of the timothy grass allergen, Phl p 7. Biochemistry, 47(30), 7846-7856. https://doi.org/10.1021/bi800620g
  3. Tan, A., Tanner, J. J., & Henzl, M. T. (2008). Energetics of OCP1–OCP2 complex formation. Biophysical Chemistry, 134(1-2), 64-71. https://doi.org/10.1016/j.bpc.2008.01.005
  4. Henzl, M. T., Davis, M. E., & Tan, A. (2010). Polcalcin divalent ion-binding behavior and thermal stability: comparison of Bet v 4, Bra n 1, and Bra n 2 to Phl p 7. Biochemistry, 49(10), 2256–2268. https://doi.org/10.1021/bi902115v
  5. Zhong, Y., Whittington, C. F., & Haynie, D. T. (2007). Stimulated release of small molecules from polyelectrolyte multilayer nanocoatings. Chemical Communications, (14), 1415-1417. https://doi.org/10.1039/b615699a
  6. Swearingen, K. E., Loomis, W. P., Zheng, M., Cookson, B. T., & Dovichi, N. J. (2010). Proteomic profiling of lipopolysaccharide-activated macrophages by isotope coded affinity tagging. Journal of Proteome Research, 9(5), 2412–2421. https://doi.org/10.1021/pr901124u
  7. Rubio, C., Pincus, D., Korennykh, A., Schuck, S., El-Samad, H., & Walter, P. (2011). Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity. The Journal of Cell Biology, 193(1), 171-184. https://doi.org/10.1083/jcb.201007077
  8. Guo, L. W., Assadi-Porter, F. M., Grant, J. E., Wu, H., Markley, J. L., & Ruoho, A. E. (2007). One-step purification of bacterially expressed recombinant transducin α-subunit and isotopically labeled PDE6 γ-subunit for NMR analysis. Protein Expression and Purification, 51(2), 187-197. https://doi.org/10.1016/j.pep.2006.07.012
  9. Keith, K. E., Killip, L., He, P., Moran, G. R., & Valvano, M. A. (2007). Burkholderia cenocepacia C5424 produces a pigment with antioxidant properties using a homogentisate intermediate. Journal of Bacteriology, 189(24), 9057-9065.https://doi.org/10.1128/JB.00436-07
  10. Norais, C. A., Chitteni-Pattu, S., Wood, E. A., Inman, R. B., & Cox, M. M. (2009). DdrB protein, an alternative Deinococcus radiodurans SSB induced by ionizing radiation. Journal of Biological Chemistry, 284(32), 21402-21411. https://doi.org/10.1074/jbc.M109.010454
  11. Johnson, T. A., & Holyoak, T. (2010). Increasing the conformational entropy of the Ω-loop lid domain in phosphoenolpyruvate carboxykinase impairs catalysis and decreases catalytic fidelity. Biochemistry, 49(25), 5176-5187.https://doi.org/10.1021/bi100399e
  12. Sandoval, C. M., Baker, S. L., Jansen, K., Metzner, S. I., & Sousa, M. C. (2011). Crystal structure of BamD: an essential component of the β-barrel assembly machinery of gram-negative bacteria. Journal of Molecular Biology, 409(3), 348-357. https://doi.org/10.1016/j.jmb.2011.03.035
  13. Sharma, B., Deo, S. K., Bachas, L. G., & Daunert, S. (2005). Competitive binding assay using fluorescence resonance energy transfer for the identification of calmodulin antagonists. Bioconjugate Chemistry, 16(5), 1257-1263. https://doi.org/10.1021/bc050161y
  14. Lee, K. H., Saleh, L., Anton, B. P., Madinger, C. L., Benner, J. S., Iwig, D. F., ... & Booker, S. J. (2009). Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily. Biochemistry, 48(42), 10162-10174. https://doi.org/10.1021/bi900939w
  15. Bailey, S. W., & Ayling, J. E. (2009). The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proceedings of the National Academy of Sciences, 106(36), 15424-15429. https://doi.org/10.1073/pnas.0902072106
  16. Hasoun, L. Z., Bailey, S. W., Outlaw, K. K., & Ayling, J. E. (2013). Effect of serum folate status on total folate and 5-methyltetrahydrofolate in human skin. The American Journal of Clinical Nutrition, 98(1), 42-48. https://doi.org/10.3945/ajcn.112.057562
  17. Landgraf, B. J., Arcinas, A. J., Lee, K. H., & Booker, S. J. (2013). Identification of an intermediate methyl carrier in the radical S-adenosylmethionine methylthiotransferases RimO and MiaB. Journal of the American Chemical Society, 135(41), 15404-15416. https://doi.org/10.1021/ja4048448
  18. Schaefer-Ramadan, S., Gannon, S. A., & Thorpe, C. (2013). Human augmenter of liver regeneration: probing the catalytic mechanism of a flavin-dependent sulfhydryl oxidase. Biochemistry, 52(46), 8323–8332. https://doi.org/10.1021/bi401305w
  19. Zhang, B., Zhu, D. W., Hu, X. J., Zhou, M., Shang, P., & Lin, S. X. (2014). Human 3-alpha hydroxysteroid dehydrogenase type 3 (3α-HSD3): the V54L mutation restricting the steroid alternative binding and enhancing the 20α-HSD activity. The Journal of Steroid Biochemistry and Molecular Biology, 141, 135-143.https://doi.org/10.1016/j.jsbmb.2014.01.003
  20. Hentchel, K. L., & Escalante-Semerena, J. C. (2015). In Salmonella enterica, the Gcn5-related acetyltransferase MddA (formerly YncA) acetylates methionine sulfoximine and methionine sulfone, blocking their toxic effects. Journal of Bacteriology, 197(2), 314-325.https://doi.org/10.1128/JB.02311-14
  21. Kitanishi, K., Cracan, V., & Banerjee, R. (2015). Engineered and native coenzyme B12-dependent isovaleryl-CoA/pivalyl-CoA mutase. Journal of Biological Chemistry, 290(33), 20466-20476.https://doi.org/ 10.1074/jbc.M115.646299
  22. Roy, S., Soh, J. H., & Ying, J. Y. (2016). A microarray platform for detecting disease-specific circulating miRNA in human serum. Biosensors and Bioelectronics, 75, 238-246. https://doi.org/10.1016/j.bios.2015.08.039
  23. Balan, M. D., Mcleod, M. J., Lotosky, W. R., Ghaly, M., & Holyoak, T. (2015). Inhibition and allosteric regulation of monomeric phosphoenolpyruvate carboxykinase by 3-mercaptopicolinic acid. Biochemistry, 54(38), 5878-5887.https://doi.org/10.1021/acs.biochem.5b00822
  24. Blaszczyk, A. J., Silakov, A., Zhang, B., Maiocco, S. J., Lanz, N. D., Kelly, W. L., ... & Booker, S. J. (2016). Spectroscopic and electrochemical characterization of the iron–sulfur and cobalamin cofactors of TsrM, an unusual radical S-adenosylmethionine methylase. Journal of the American Chemical Society, 138(10), 3416-3426.https://doi.org/10.1021/jacs.5b12592
  25. Lanz, N. D., Lee, K. H., Horstmann, A. K., Pandelia, M. E., Cicchillo, R. M., Krebs, C., & Booker, S. J. (2016). Characterization of lipoyl synthase from Mycobacterium tuberculosis. Biochemistry, 55(9), 1372-1383. https://doi.org/10.1021/acs.biochem.5b01216
  26. Block, E., Booker, S. J., Flores‐Penalba, S., George, G. N., Gundala, S., Landgraf, B. J., ... & Vattekkatte, A. (2016). Trifluoroselenomethionine: A new unnatural amino acid. ChemBioChem, 17(18), 1738-1751. https://doi.org/10.1002/cbic.201600266
  27. Bird, J. G., Zhang, Y., Tian, Y., Panova, N., Barvík, I., Greene, L., ... & Kaplan, C. D. (2016). The mechanism of RNA 5′ capping with NAD+, NADH and desphospho-CoA. Nature, 535(7612), 444. https://doi.org/10.1038/nature18622
  28. Ledwitch, K. V., Gibbs, M. E., Barnes, R. W., & Roberts, A. G. (2016). Cooperativity between verapamil and ATP bound to the efflux transporter P-glycoprotein. Biochemical Pharmacology, 118, 96-108. https://doi.org/10.1016/j.bcp.2016.08.013
  29. Wei, Y., Kuzmič, P., Yu, R., Modi, G., & Hedstrom, L. (2016). Inhibition of inosine-5′-monophosphate dehydrogenase from Bacillus anthracis: mechanism revealed by pre-steady-state kinetics. Biochemistry, 55(37), 5279-5288.https://doi.org/10.1021/acs.biochem.6b00265
  30. Addington, C. P., Dharmawaj, S., Heffernan, J. M., Sirianni, R. W., & Stabenfeldt, S. E. (2017). Hyaluronic acid-laminin hydrogels increase neural stem cell transplant retention and migratory response to SDF-1α. Matrix Biology, 60, 206-216. https://doi.org/10.1016/j.matbio.2016.09.007
  31. Parvez, S., Long, M. J., Lin, H. Y., Zhao, Y., Haegele, J. A., Pham, V. N., ... & Aye, Y. (2016). T-REX on-demand redox targeting in live cells. Nature Protocols, 11(12), 2328. https://doi.org/10.1038/nprot.2016.114
  32. Rogals, M. J., Greenwood, A. I., Kwon, J., Lu, K. P., & Nicholson, L. K. (2016). Neighboring phosphoSer‐Pro motifs in the undefined domain of IRAK 1 impart bivalent advantage for Pin1 binding. The FEBS Journal, 283(24), 4528-4548. https://doi.org/10.1111/febs.13943
  33. Case, H., & Dickenson, N. (2018). Kinetic characterization of the shigella type three secretion system ATPase spa47 using α-32P ATP. Bio-Protocol, 8(21): e3074. https://doi.org/10.21769/bioprotoc.3074
  34. Bohl, T. E., Shi, K., Lee, J. K., & Aihara, H. (2018). Crystal structure of lipid A disaccharide synthase LpxB from Escherichia coli. Nature Communications, 9(1), 377.10.1038/s41467-017-02712-9
  35. Fassler, R., Edinger, N., Rimon, O., & Reichmann, D. (2018). Defining Hsp33's redox-regulated chaperone activity and mapping conformational changes on Hsp33 using hydrogen-deuterium exchange mass spectrometry. JoVE (Journal of Visualized Experiments), (136), e57806. https://doi.org/10.3791/57806
  36. Hu, Q., & Shokat, K. M. (2018). Disease-causing mutations in the G protein Gαs subvert the roles of GDP and GTP. Cell, 173(5), 1254–1264.e11. https://doi.org/10.1016/j.cell.2018.03.018
  37. Pisa, R., Cupido, T., Steinman, J. B., Jones, N. H., & Kapoor, T. M. (2019). Analyzing resistance to design selective chemical inhibitors for AAA proteins. Cell Chemical Biology.https://doi.org/10.1016/j.chembiol.2019.06.001
  38. Kim, S., Loeff, L., Colombo, S., Jergic, S., Brouns, S. J. J., & Joo, C. (2020). Selective loading and processing of prespacers for precise CRISPR adaptation. Nature, 579(7797), 141–145. https://doi.org/10.1038/s41586-020-2018-1
  39. Klein, B. J., Cox, K. L., Jang, S. M., Côté, J., Poirier, M. G., & Kutateladze, T. G. (2020). Molecular basis for the PZP domain of BRPF1 association with chromatin. Structure, 28(1), 105–110.e3. https://doi.org/10.1016/j.str.2019.10.014
  40. Cohen, D. T., Wales, T. E., McHenry, M. W., Engen, J. R., & Walensky, L. D. (2020). Site-dependent cysteine lipidation potentiates the activation of proapoptotic BAX. Cell Reports, 30(10), 3229–3239.e6. https://doi.org/10.1016/j.celrep.2020.02.057
  41. Pyrpassopoulos, S., Shuman, H., & Ostap, E. M. (2020). Modulation of kinesin’s load-bearing capacity by force geometry and the microtubule track. Biophysical Journal, 118(1), 243–253. https://doi.org/10.1016/j.bpj.2019.10.045
  42. Ruetz, M., Kumutima, J., Lewis, B. E., Filipovic, M. R., Lehnert, N., Stemmler, T. L., & Banerjee, R. (2017). A distal ligand mutes the interaction of hydrogen sulfide with human neuroglobin. Journal of Biological Chemistry, 292(16), 6512–6528. https://doi.org/10.1074/jbc.m116.770370
  43. Jin, J., Jung, I. H., Moon, S. H., Jeon, S., Jeong, S. J., Sonn, S. K., ... & Kim, S. (2020). CD137 signaling regulates acute colitis via RALDH2-expressing CD11b− CD103+ DCs. Cell Reports, 30(12), 4124-4136. https://doi.org/10.1016/j.celrep.2020.02.103
  44. Grzybowski, A. T., Shah, R. N., Richter, W. F., & Ruthenburg, A. J. (2019). Native internally calibrated chromatin immunoprecipitation for quantitative studies of histone post-translational modifications. Nature Protocols, 14(12), 3275–3302. https://doi.org/10.1038/s41596-019-0218-7
  45. Seven, A. B., Hilger, D., Papasergi-Scott, M. M., Zhang, L., Qu, Q., Kobilka, B. K., ... & Skiniotis, G. (2020). Structures of Gα proteins in complex with their chaperone reveal quality control mechanisms. Cell Reports, 30(11), 3699–3709.e6. https://doi.org/10.1016/j.celrep.2020.02.086
  46. Qu, X., Kumar, A., Blockus, H., Waites, C., & Bartolini, F. (2019). Activity-dependent nucleation of dynamic microtubules at presynaptic boutons controls neurotransmission. Current Biology, 29(24), 4231-4240.e5. https://doi.org/10.1016/j.cub.2019.10.049
  47. Blus, B. J., Hashimoto, H., Seo, H.-S., Krolak, A., & Debler, E. W. (2019). Substrate affinity and specificity of the ScSth1p bromodomain are fine-tuned for versatile histone recognition. Structure, 27(9), 1460–1468.e3. https://doi.org/10.1016/j.str.2019.06.009
  48. Jia, N., Jones, R., Sukenick, G., & Patel, D. J. (2019). Second messenger cA4 formation within the composite Csm1 palm pocket of type III-A CRISPR-Cas Csm complex and its release path. Molecular cell, 75(5), 933-943. https://doi.org/10.1016/j.molcel.2019.06.013
  49. Jia, N., Jones, R., Yang, G., Ouerfelli, O., & Patel, D. J. (2019). CRISPR-Cas III-A Csm6 CARF domain is a ring nuclease triggering stepwise cA4 cleavage with ApA> p formation terminating RNase activity. Molecular Cell, 75(5), 944-956. https://doi.org/10.1016/j.molcel.2019.06.014
  50. Jia, N., Mo, C. Y., Wang, C., Eng, E. T., Marraffini, L. A., & Patel, D. J. (2019). Type III-A CRISPR-Cas Csm complexes: assembly, periodic RNA cleavage, DNase activity regulation, and autoimmunity. Molecular Cell, 73(2), 264-277.e5. https://doi.org/10.1016/j.molcel.2018.11.007
  51. Li, Y., Zhang, Z., Phoo, W. W., Loh, Y. R., Li, R., Yang, H. Y., ... & Luo, D. (2018). Structural insights into the inhibition of Zika virus NS2B-NS3 protease by a small-molecule inhibitor. Structure, 26(4), 555-564. https://doi.org/10.1016/j.str.2018.02.005
  52. Campbell, B. C., Petsko, G. A., & Liu, C. F. (2018). Crystal structure of green fluorescent protein clover and design of clover-based redox sensors. Structure, 26(2), 225-237. https://doi.org/10.1016/j.str.2017.12.006
  53. Martin-Perez, M., & Villén, J. (2017). Determinants and regulation of protein turnover in yeast. Cell Systems, 5(3), 283-294. https://doi.org/10.1016/j.cels.2017.08.008
  54. Li, Y., Zhang, Z., Phoo, W. W., Loh, Y. R., Wang, W., Liu, S., ... & Kang, C. (2017). Structural dynamics of Zika virus NS2B-NS3 protease binding to dipeptide inhibitors. Structure, 25(8), 1242-1250. https://doi.org/10.1016/j.str.2017.06.006
  55. Huang, T. L., Wang, H. J., Chang, Y. C., Wang, S. W., & Hsia, K. C. (2020). Promiscuous binding of microprotein Mozart1 to γ-Tubulin complex mediates specific subcellular targeting to control microtubule array formation. Cell Reports, 31(13), 107836. https://doi.org/10.1016/j.celrep.2020.107836
  56. Wieczorek, M., Huang, T. L., Urnavicius, L., Hsia, K. C., & Kapoor, T. M. (2020). MZT proteins form multi-faceted structural modules in the γ-Tubulin ring complex. Cell Reports, 31(13), 107791. https://doi.org/10.1016/j.celrep.2020.107791
back

Join our list to receive promos and articles.

Join Now