Reference Library

  1. Kim, J. H., Choi, D. C., Yeon, K. M., Kim, S. R., & Lee, C. H. (2011). Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environmental Science & Technology, 45(4), 1601-1607.
  2. Mima, T., Schweizer, H. P., & Xu, Z. Q. (2010). In vitro activity of cethromycin against Burkholderia pseudomallei and investigation of mechanism of resistance. Journal of Antimicrobial Chemotherapy, 66(1), 73-78.
  3. Choi, D. C., Won, Y. J., Lee, C. H., Lee, S., Lee, M. H., & Khang, D. Y. (2013). Tunable pore size micro/submicron-sieve membranes by soft lithography. Journal of Materials Chemistry A, 1(40), 12448-12454.
  4. Won, Y. J., Choi, D. C., Jang, J. H., Lee, J. W., Chae, H. R., Kim, I., ... & Kim, I. C. (2014). Factors affecting pattern fidelity and performance of a patterned membrane. Journal of Membrane Science, 462, 1-8.
  5. Chorba, J. S., Galvan, A. M., & Shokat, K. M. (2018). A high-throughput luciferase assay to evaluate proteolysis of the single-turnover protease PCSK9. JoVE (Journal of Visualized Experiments), (138), e58265.
  6. Bohl, T. E., Shi, K., Lee, J. K., & Aihara, H. (2018). Crystal structure of lipid A disaccharide synthase LpxB from Escherichia coli. Nature Communications, 9(1), 377.10.1038/s41467-017-02712-9
  7. Sierra-Valdez, F. J., Stein, R. A., Velissety, P., Vasquez, V., & Cordero-Morales, J. F. (2018). Purification and reconstitution of TRPV1 for spectroscopic analysis. JoVE (Journal of Visualized Experiments), (137), e57796.
  8. Hu, Q., & Shokat, K. M. (2018). Disease-causing mutations in the G protein Gαs subvert the roles of GDP and GTP. Cell, 173(5), 1254–1264.e11.
  9. Liu, X., Schuessler, P. J., Sahoo, A., & Walker, S. E. (2019). Reconstitution and analyses of RNA interactions with eukaryotic translation initiation factors and ribosomal preinitiation complexes. Methods. 162–163, 42–53.
  10. Miller, S. M., Wang, T., Randolph, P. B., Arbab, M., Shen, M. W., Huang, T. P., ... & Liu, D. R. (2020). Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nature Biotechnology, 1-11.
  11. Shin, J., Zhang, S., Der, B. S., Nielsen, A. A., & Voigt, C. A. (2020). Programming Escherichia coli to function as a digital display. Molecular Systems Biology, 16(3).
  12. Taketani, M., Zhang, J., Zhang, S., Triassi, A. J., Huang, Y.-J., Griffith, L. G., & Voigt, C. A. (2020). Genetic circuit design automation for the gut resident species Bacteroides thetaiotaomicron. Nature Biotechnology.
  13. Wang, T., Badran, A. H., Huang, T. P., & Liu, D. R. (2018). Continuous directed evolution of proteins with improved soluble expression. Nature Chemical Biology, 14(10), 972-980.
  14. Pontrelli, S., Fricke, R. C., Teoh, S. T., Laviña, W. A., Putri, S. P., Fitz-Gibbon, S., ... & Liao, J. C. (2018). Metabolic repair through emergence of new pathways in Escherichia coli. Nature Chemical Biology, 14(11), 1005-1009.
  15. English, J. G., Olsen, R. H., Lansu, K., Patel, M., White, K., Cockrell, A. S., ... & Roth, B. L. (2019). VEGAS as a platform for facile directed evolution in mammalian cells. Cell, 178(3), 748–761.e17.
  16. Guo, M. S., Haakonsen, D. L., Zeng, W., Schumacher, M. A., & Laub, M. T. (2018). A bacterial chromosome structuring protein binds overtwisted DNA to stimulate type II topoisomerases and enable DNA replication. Cell, 175(2), 583-597.
  17. Mighell, T. L., Evans-Dutson, S., & O’Roak, B. J. (2018). A saturation mutagenesis approach to understanding PTEN lipid phosphatase activity and genotype-phenotype relationships. The American Journal of Human Genetics, 102(5), 943-955. 10.1016/j.ajhg.2018.03.018
  18. Chen, Y. C., Farzadfard, F., Gharaei, N., Chen, W. C., Cao, J., & Lu, T. K. (2017). Randomized CRISPR-Cas transcriptional perturbation screening reveals protective genes against alpha-synuclein toxicity. Molecular Cell, 68(1), 247-257.
  19. Billon, P., Bryant, E. E., Joseph, S. A., Nambiar, T. S., Hayward, S. B., Rothstein, R., & Ciccia, A. (2017). CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Molecular Cell, 67(6), 1068-1079.

Join our list to receive promos and articles.

Join Now