Protocol

TD-P Revision 1.3

Creation Date: 8/19/2019 Revision Date: 3/7/2025

TG1 Phage Display Electrocompetent Cells Transformation Protocol

Introduction

GoldBio's TG1 Phage Display Electrocompetent *E. coli* cells are suitable for protein expression and preparation of antibody or peptide phage display libraries. TG1 Phage Display cells have $\geq 1 \times 10^9$ cfu/µg efficiency with electroporation and have Amber suppressor strain (*supE*). Here, we present a detailed protocol for electroporation using TG1 Phage Display Electrocompetent *E. coli* cells.

Materials

- TG1 Phage Display Electrocompetent *E. coli* cells (GoldBio Catalog # CC-205)
- pUC19 Control DNA, 10 pg/μl
- E. coli Recovery Medium (GoldBio Catalog # CC-302)
- Ampicillin (GoldBio Catalog # A-301)
- LB agar selection plates
- Sterile electroporation cuvettes
- Microcentrifuge tubes
- Electroporator
- Shaker incubator

Storage and Handling

- This product may be shipped on dry ice. TG1 Phage Display Electrocompetent *E. coli* cells should be stored at -80°C, pUC19 Control DNA should be stored at -20°C and recovery medium should be stored at 4°C immediately upon arrival. When stored under the recommended conditions and handled correctly, these products should be stable for at least 1 year from the date of receipt.
- Thaw TG1 Phage Display Electrocompetent *E. coli* cells and pUC19 Control DNA ice and mix by gentle vortexing. After thawing, these products should be kept on ice before use. These products can be refrozen for storage.

Note: The genotype of TG1 Phage Display Electrocompetent *E. coli* cells is F' [traD36 proAB⁺ lacl^q lacZ Δ M15] supE thi-1 Δ (mcrB- hsdSM)5(r_K -, m_K -) Δ (lac-proAB).

Note: Transformation efficiency is tested by using the pUC19 control DNA supplied with the kit and using given below. Transformation efficiency should be $\ge 1 \times 10^9$ cfu/µg pUC19 DNA. Untransformed cells are tested for appropriate antibiotic sensitivity.

Gold Biotechnology/ FM-000008
TG1 Phage Display Electrocompetent Cells Transformation Protocol

TD-P Revision 1.3 TD-P Date: 3/7/2025

Method

Transformation protocol

Use this procedure to transform TG1 Phage Display Electrocompetent *E. coli* cells. Do not use these cells for chemical transformation.

Note: Handle the competent cells gently as they are highly sensitive to changes in temperature or mechanical lysis caused by pipetting.

Note: Thaw competent cells on ice and transform cells immediately following thawing. After adding DNA, mix by tapping the tube gently. Do not mix cells by pipetting or vortexing.

- 1. Place sterile cuvettes and microcentrifuge tubes on ice.
- 2. Remove competent cells from the -80°C freezer and thaw completely on ice (10-15 minutes).
- 3. Aliquot 1 µl (1 pg-10 ng) of DNA to the chilled microcentrifuge tubes on ice.
- 4. When the cells are thawed, add 25 μ l of cells to each DNA tube on ice and mix gently by tapping 4-5 times. For the pUC19 control, add 1 μ l of (10 pg/ μ l) DNA to 25 μ l of cells on ice. Mix well by tapping. **Do not** pipette up and down or vortex to mix, this can harm cells and decrease transformation efficiency.
- 5. Pipette 26 µl of the cell/DNA mixture into a chilled electroporation cuvette without introducing bubbles. Quickly flick the cuvette downward with your wrist to deposit the cells across the bottom of the well and then electroporate.
- 6. Immediately add 974 μ l of Recovery Medium or any other medium of choice to the cuvette, pipette up and down three times to resuspend the cells. Transfer the cells and Recovery Medium to a culture tube.
- 7. Incubate at 37°C for 1 hour at 210 rpm in a shaking incubator.
- 8. Dilute the cells as appropriate then spread 20-200 μ l cells onto a prewarmed selective plate. For the pUC control, plate 50 μ l of the diluted transformants onto an LB plate containing 100 μ g/ml ampicillin. Use a sterilized spreader or autoclaved plating beads to spread evenly.
- 9. Incubate the plates overnight at 37°C.

Gold Biotechnology/ FM-000008
TG1 Phage Display Electrocompetent Cells Transformation Protocol

TD-P Revision 1.3 TD-P Date: 3/7/2025

Calculations

Transformation efficiency (TE) is defined as the number of colony forming units (cfu) produced by transforming 1 μ g of plasmid into a given volume of competent cells.

TE = Colonies/μg/Dilution

Where:

Colonies = the number of colonies counted μg = amount of DNA transformed in μg Dilution = total dilution of the DNA before plating

Example:

Transform 1 μ l of (10 pg/μ l) pUC19 control plasmid into 50 μ l of cells, add 950 μ l of Recovery Medium. Dilute 10 μ l of this in 990 μ l of Recovery Medium and plate 50 μ l. Count the colonies on the plate the next day. If you count 250 colonies, the TE is calculated as follows:

Colonies = 250 μg of DNA in 10 pg = 0.00001 Dilution = 10 μ l/1000 x 50 μ l/1000 = 0.0005

 $TE = 250/0.00001/0.0005 = 5.0 \times 10^{10}$

Associated Products

- GB10B Electrocompetent E. coli Cells (GoldBio Catalog # CC-200)
- GB10B-Pro™ Electrocompetent *E. coli* Cells (GoldBio Catalog # CC-201)
- GB5-alpha Electrocompetent E. coli Cells (GoldBio Catalog # CC-203)
- BL21 (DE3) Electrocompetent E. coli Cells (GoldBio Catalog # CC-204)
- TG1 Phage Display Electrocompetent Cells (GoldBio Catalog # CC-205)
- E. coli Competent Cell Recovery Medium (GoldBio Catalog # CC-302)
- Ampicillin (GoldBio Catalog # A-301)

3