

TD-P Revision 3.0

Creation Date: 6/24/2014 Revision Date: 2/6/2019

Developing a Titration Kill Curve (Adherent Cells) Utilizing G418, Hygromycin B or Puromycin

Introduction

A Kill Curve is a dose response experiment which tests the amount of antibiotic resistance in a cell line using incremental doses that determine the minimum antibiotic concentration required to kill all of the cells. Each mammalian cell line has a different sensitivity. Before experimentation, you should determine the optimal concentration of your antibiotic by developing the Kill Curve titration for your cells as detailed below.

Materials

- DMEM (Dulbecco's Modified Eagle Medium)
- 10% FBS (Fetal Bovine Serum)
- G418 [G418 Sulfate, GoldBio Catalog # G-418, (MW = 692.71 g/mol)]
- Hygromycin B [Hygromycin B, GoldBio Catalog # H-270, (MW = 563.5 g/mol)]
- Puromycin [Puromycin Dihydrochloride, GoldBio Catalog # P-600, (MW = 544.43 g/mol)]

Method

- Generate a cell suspension from adherent cells at 1:5 in 10 ml DMEM + 10% FBS media. Cells may be harvesting either by cell scraping the dish or by Trypsinization.
- 2. Transfer 0.5 mL cell suspension into 24-well plate containing 500 μl of (media + antibiotic).

a. Antibiotics to use: G418, Hygromycin B or Puromycin.

- 3. Examine viability every 2 days.
- 4. Culture for 14 days. Replace the media containing antibiotic every 3 days.
- 5. Use the lowest concentration of your antibiotic that begins to give massive cell death in 3 days and kills all the cells within two weeks. A general starting point is usually 400 μ g/ml G418 for HeLa cells and 200 μ g/ml hygromycin for CHO cells. In mammalian cells the optimal level of puromycin is typically around 1 μ g/ml. HeLa cells are often selectable with 500 μ g/ml G418, 500 μ g/ml hygromycin, or 2.5 μ g/ml puromycin, and SHSY-5Y cells are often selectable with 600 μ g/ml G418 or 200 μ g/ml hygromycin.

Gold Biotechnology/ FM-000008 Developing a Titration Kill Curve (Adherent Cells) TD-P Revision 3.0 TD-P Date: 2/6/2019

Calculations

Volume of Stock Solution Added (µl)		Final Concentration	Volume of Stock Solution Added (μl)	Final Concentration
G418 (200 mg/ml)	Hygromycin B (50 mg/ml)	(µg/ml)	Puromycin (2.5 mg/ml)	(μg/ml)
0	0	0	0	0
0.25	1	50	0.2	0.5
0.5	2	100	0.4	1.0
0.75	3	150	0.6	1.5
1.0	4	200	0.8	2.0
1.5	6	300	1.0	2.5
2.0	8	400	1.2	3.0
2.5	10	500	1.6	4.0
3.0	12	600	1.8	4.5
3.5	14	700	2.0	5.0
4.0	16	800	2.4	6.0
5.0	20	1 mg/ml	3.0	7.5