Reverse Transcriptase & cDNA Overview & Applications
by Katharine Martin

by Katharine Martin
Reverse transcription is a technique used by researchers to generate a complementary strand of DNA (cDNA) from RNA. The technology is based on a retroviral mechanism whereby the enzyme reverse transcriptase can reverse transcribe RNA into DNA. This is especially helpful when scientists only have tissue and want to study gene sequence. In this situation, researchers can isolate mRNA from the tissue and then use reverse transcription to produce cDNA.
This article explores the foundation of reverse transcription technology, cDNA synthesis and downstream applications using reverse transcriptase.
Reverse Transcriptase Overview
Basic Science behind the Reverse Transcriptase Enzyme
The Use of Reverse Transcriptase in Molecular Biology
Viral Sources of Reverse Transcriptase
Choosing a Reverse Transcriptase for Your Experiment
Should I Do a One-Step or Two-Step RT-PCR/RT-qPCR?
Applications Involving cDNA and Reverse Transcription
In nature, the reverse transcriptase enzyme is what allows retroviruses (RNA type virus) to duplicate and integrate their RNA genomes into a host DNA genome. The enzyme has three biochemical activities enabling this process: RNA-dependent DNA polymerase activity, ribonuclease H activity and DNA-dependent DNA polymerase activity (Bhagavan & Ha, 2015).
Once in the host, viral RNA and its accompanying enzymes use host nucleotides to assemble a complementary single strand of DNA that is hybridized with the original RNA strand. RNase H cleaves the RNA-DNA hybrid, enabling formation of double-stranded DNA using DNA-dependent DNA polymerase. With the assistance of the enzyme integrase, the new strand of DNA is incorporated into the host genome (Bhagavan & Ha, 2015).
The mechanism behind reverse transcription has expanded the world of molecular biology by helping scientists overcome earlier obstacles by allowing scientists to use RNA as starting material instead of DNA.
	From the cDNA products, we  are able to examine the genetic makeup of different
tumors, PCR traditionally and quantitatively, 
	express unique proteins,
generate libraries of DNA sequences that code important proteins, and more.
	
Wildtype M-MLV has a lower reaction temperature that makes it challenging to perform reverse transcription on RNA with strong secondary structure. However, variants exist that further reduce RNase H activity. Compared to wildtype M-MLV, the H minus (H-) variant is more thermostable, allowing for a much higher reaction temperature (55°C).
M-MLV reverse transcriptase is ideal for cDNA and first strand cDNA synthesis, RT-PCR and gene expression validation using reverse transcription PCR (RT-PCR).
General Characteristics of M-MLV RT:
- Size:                                        70 kDa
- RNase H Activity:                    Reduced RNase H activity
- Reaction Temperature: up to 55°C
- Benefits:   Greatly reduced RNase H activity, high temperature tolerance, ideal for full-length cDNA production
Because AMV reverse transcriptase can withstand higher temperatures, it is often used when RNA has stronger secondary structure. However, higher reaction temperatures can denature RNA. Some protocols combat the issue of overcoming strong secondary structure without jeopardizing RNA by incorporating a fast denaturing and cooling step.
AMV reverse transcriptase naturally has RNase H activity, which degrades RNA from the RNA/DNA hybrid.
General Characteristics of AMV RT:
- Size:                                        65 kDa α subunit, 95 kDa β subunit
- RNase H Activity:                    RNase H +
- Reaction Temperature: 25°C - 58°C. Optimal between 42°C - 48°C
- Benefits:  Used with RNA that has strong secondary structure.
Different reverse transcriptases are suited for different situations. This section highlights a few applications and the best choice transcriptase.
Applications/Conditions:
There are some simple ways to help narrow down which method you should choose for either RT-PCR or RT-qPCR, and it all boils down to sensitivity requirements, experimental size and complexity, and how much available time you have. There are several kits on the market which include a reverse transcriptase suited for one-step and two-step processes.
Choose one-step RT-PCR when:
Choose two-step RT-PCR when:
The central dogma of biology states that genetic information is passed first from DNA, then to RNA and then used for protein production. Reverse transcription and cDNA synthesis enables scientists to work backward, decoding vital information about proteins and protein mutations. The value, however, of cDNA goes beyond that.
Researchers are able to use cDNA for RNA quantitation, to protect the genetic makeup of an endangered species, dive deeper into clinical research, understand the mRNA and protein involved during a given developmental stage, and so much more.
By being able to created cDNA libraries, scientists are able to study sequences specific to a given tissue and develop sharable databases.
        cDNA libraries are based on mRNA complements, and represent the mRNA makeup within a given cell or tissue. Libraries provide a lot of information about the identity and functionality of specific genes. Libraries also provide proportional insights into the abundance of RNA produced in a given cell or tissue because the more an mRNA is expressed, the more cDNA will be produced and vice versa.
cDNA libraries are different from genomic libraries in the following ways:
A benefit of cDNA and cDNA libraries, which is another point of separation from genomic libraries, is that cDNA does not have introns. This is extremely useful when using prokaryotic organisms for cloning since they do not have splicing capabilities.
Just as a traditional library might have a book of interest, a cDNA library will hold copies of a gene of interest, and researchers need a way of identifying that gene.
                  There are many colonies on a master plate of a cDNA library since the library holds the mRNA representation of a given tissue or cell. This is where library screening comes into play. Here are a few screening processes highlighted from the highly rated Shomu’s Biology on Youtube:
In this screening method, a nylon filter paper is used to replicate a master plate containing colonies (each colony contains a homogenous population of identical closed plasmid) by pressing it onto the master plate thereby transferring cells from the colonies from the master plate onto the nylon transfer paper. The filter paper is treated with an alkaline solution to lyse the cells and denature the DNA. Then, radio labeled probes comprising complementary oligos of the target sequence are added. The probes hybridize with DNA from the lysed cells. Then, the filter paper is exposed to X-ray which will once developed, will allow visualization of the target, and enable us to make a comparison between the labeled nylon paper and the master plate to find the colonies containing our DNA of interest. The selected colonies are then picked and grown on nutrient medium.
Reverse transcription is the key to obtaining the initial
DNA (cDNA) which can then be used in a number of applications to further study
a gene.
	
There are options for traditional RT-PCR kits and for One Step kits. One Step RT-PCR kits are extremely easy to use, involving a reaction setup with an RNA template, reverse transcriptase and PCR mix, so that cDNA is both synthesized and amplified.
One Step RT-qPCR features more consistent results, fewer steps, and ideal for high-throughput amplifications. One of the major downsides is the inability to individualize and optimize each process (cDNA synthesis and PCR). The one step process can also have reduced sensitivity.
Performing RT-qPCR in two steps (cDNA synthesis followed by qPCR) allows better experimental optimization.
Synthesized cDNA also allows researchers to perform protein
purification and expression, and gene expression profiling.
	
Bhagavan, N. V., & Ha, C. (2015). Essentials of medical biochemistry: With clinical cases. Amsterdam: Academic Press. doi:10.1016/b978-0-12-416687-5.00022-1
Biology, S. (2013, October 26). Retrieved June, 2019, from https://www.youtube.com/watch?v=2nFfxah8RO8
Biology, S. (2015, November 25). Retrieved June, 2019, from https://www.youtube.com/watch?v=fmMp6avlB6I
Biology, S. (2016, February 15). Retrieved June 14, 2019, from https://www.youtube.com/watch?v=6qeFf2gXhkQ
Bremgartner, M. (2016, October 26). Retrieved June, 2019, from https://www.youtube.com/watch?v=ta69UIVcEvU
CDNA (Complementary DNA). (n.d.). Retrieved June, 2019, from http://humangenes.org/cdna-complementary-dna
Coffin, J. M., Hughes, S. H., & Varmus, H. E. (Eds.). (1997). Overview of Reverse Transcription. Retroviruses. Retrieved June, 2019, from https://www.ncbi.nlm.nih.gov/books/NBK19424/#__NBK19424_dtls__.
Liu, C., Lu, T., Feng, B., Liu, D., Guan, W., & Ma, Y. (2010). Construction of cDNA library and preliminary analysis of expressed sequence tags from Siberian tiger. Retrieved June, 2019, from http://www.ijbs.com/v06p0584.htm
Eberwine, J., Spencer, C., Miyashiro, K., Mackler, S., & Finnell, R. (1995). Complementary DNA Synthesis in Situ: Methods and Applications. Recombinant DNA Methodology II,3-23. doi:10.1016/b978-0-12-765561-1.50007-2
Gonzales, M. (2010, February). RTPCR (Reverse Transcription, PCR). Retrieved June, 2019, from http://fg.cns.utexas.edu/fg/protocol__RTPCR.html
Goodsell, D. (2002, September). PDB101: Molecule of the Month: HIV Reverse Transcriptase. Retrieved June, 2019, from https://pdb101.rcsb.org/motm/33
How To Get The Best cDNA For Gene Isolation. (2015, June 08). Retrieved June, 2019, from https://bitesizebio.com/650/how-to-get-the-best-cdna-for-gene-isolation/
Hu, P., Li, X., Liu, H., Guan, W., & Ma, Y. (2014). Construction and characterization of a cDNA expression library from the endangered Hu sheep. Genetics and Molecular Research,13(4), 9019-9023. doi:10.4238/2014.october.31.16
Isolation and use of cDNA clones. (n.d.). Retrieved June, 2019, from http://www-users.med.cornell.edu/~jawagne/cDNA_cloning.html
Khanacademymedicine. (2015, March 25). Retrieved June, 2019, from https://www.youtube.com/watch?v=aQxyXfIfa9A
McClean, P. (1997). Clone Library Screening. Retrieved June, 2019, from https://www.ndsu.edu/pubweb/~mcclean/plsc431/cloning/clone5.htm
Namuth-Covert, D. (n.d.). Gene Cloning Part 1: The Mechanics of Recombinant DNA. Retrieved June, 2019, from https://passel.unl.edu/communities/index.php?idinformationmodule=959197140&topicorder=15&maxto=16&minto=0&idcollectionmodule=1130274210
Perbal, B. (2008). Avian myeoloblastosis virus (AMV): Only one side of the coin. Retrovirology,5(1), 49. doi:10.1186/1742-4690-5-49
Provenzano, M., & Mocellin, S. (2007). Complementary techniques: Validation of gene expression data by quantitative real time PCR. Adv Exp Med Biol,66-73. doi:10.7287/peerj.6522v0.1/reviews/1
Reverse Transcriptase. Choosing The Best RT-qPCR Method. (2019, March 15). Retrieved June, 2019, from https://bitesizebio.com/33640/rt-qpcr-reverse-transcription-methods/
Schultz, S., & Champoux, J. (2008). RNase H Activity: Structure, Specificity, and Function in Reverse Transcription. Virus Research,86-103. Retrieved June, 2019, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2464458/.
Sterling, C. H., Veksler-Lublinsky, I., & Ambros, V. (2014). An efficient and sensitive method for preparing cDNA libraries from scarce biological samples. Nucleic Acids Research,43(1). doi:10.1093/nar/gku637
Tanese, N., & Goff, S. P. (1988). Domain structure of the Moloney murine leukemia virus reverse transcriptase: Mutational analysis and separate expression of the DNA polymerase and RNase H activities. Proceedings of the National Academy of Sciences,85(6), 1777-1781. doi:10.1073/pnas.85.6.1777
Weinberg, E., & Dorkin, R. (n.d.). CDNA Libraries and Expression Libraries. Retrieved June, 2019, from https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/recombinant-dna/cdna-libraries-and-expression-libraries/#?w=535
Wu, N., Matand, K., & Williams, S. (2009). A Novel mRNA Level Subtraction Method for Quick Identification of Target-Orientated Uniquely Expressed Genes Between Peanut Immature Pod and Leaf. Biological Procedures Online,12(1), 44-55. doi:10.1007/s12575-009-9022-z
        
      Ni2+ ions give nickel agarose beads their characteristic blue color. This blue color can fade or disappear completely when loading his-tagged proteins onto the column....
        
      Nickel agarose beads change from blue to a brown or black color when the nickel ions have been reduced from a Ni2+ to a Ni1+...
        
      The GoldBio Floating Tube Rack is one of our more clever giveaways because of the unique purpose it serves. And, with it also being one...
        
      The characteristic blue color of nickel agarose beads comes from the 2+ oxidation state of the nickel ions. Color is also a useful indicator for...