Fireflies Light the Way in the Battle Against Cancer
by Chris Menne

by Chris Menne
We love looking through published articles and seeing first-hand the amazing results that we are helping scientists achieve all around the world. And we are seeing a lot of cancer related research using our luciferin.
Cancer remains the second most common cause of death in the US, accounting for nearly ¼ of reported deaths. But the 5 year survival rate has also been increasing steadily over the last 30 years, up to 68% survival, thanks largely to better diagnostics as well as improvements in treatment…all of which would not exist without the awesome medical research being done every day for which we are happy to help provide the reagents to make it possible.
For instance, Zhang (Yin) et al. is using luciferin in breast cancer research in order to identify early tumor metastases for the purpose of developing an image-guided surgery for tumor removal. Similarly, Chandrasekaran et al. used luciferin in a study to find a new imaging system for Glioblastoma Multiforme (GBM). GBM is an aggressive type of brain cancer which cannot easily be seen in traditional PET scans utilizing F-Fluorodeoxyglucose (18F-FDG) PET due to the high rate of glucose uptake in the brain which can obscure the tumor image. By comparing a new biomarker F-Fluorothymidine (18F-FLT) against the luciferase BLI in mice, they were able to confirm a better alternative PET scan which will hopefully lead to better diagnoses of GBM in the future.
Additionally, Wang et al. used luciferin and BLI as a confirmation of several putative anticancer compounds from the North American Oplopanax horridus plant, including falcarindiol and oplopantriol A, which showed potent antiproliferative effects in vitro and in vivo on the HTC-116 tumor strain. Likewise, Zhang (Zhiyu) et al. used BLI to help demonstrate that Compound K (from the ginseng plant) inhibits the transcriptional activation of some tumor-promoting pathways of colorectal cancer (CRC).
For these and the many other cancer research groups that are diligently searching for answers to one of our species most prolific nightmares, you have our thanks and gratitude.
Zhang, Yin, et al. "Imaging tumor angiogenesis in breast cancer experimental lung metastasis with positron emission tomography, near-infrared fluorescence, and bioluminescence." Angiogenesis (2013): 1-12.
Chandrasekaran, S, et al. "18 F-Fluorothymidine-Pet Imaging of Glioblastoma Multiforme: Effects of Radiation Therapy on Radiotracer Uptake and Molecular Biomarker Patterns." The Scientific World Journal 2013 (2013).
Wang, Chong-Zhi, et al. "Identification of potential anticancer compounds from Oplopanax horridus." Phytomedicine (2013).
Zhang, Zhiyu, et al. "Compound K, a Ginsenoside Metabolite, Inhibits Colon Cancer Growth via Multiple Pathways Including p53-p21 Interactions." International Journal of Molecular Sciences 14.2 (2013): 2980-2995.
Ni2+ ions give nickel agarose beads their characteristic blue color. This blue color can fade or disappear completely when loading his-tagged proteins onto the column....
Nickel agarose beads change from blue to a brown or black color when the nickel ions have been reduced from a Ni2+ to a Ni1+...
The GoldBio Floating Tube Rack is one of our more clever giveaways because of the unique purpose it serves. And, with it also being one...
The characteristic blue color of nickel agarose beads comes from the 2+ oxidation state of the nickel ions. Color is also a useful indicator for...